美高梅在线登录网址 ,该类近晶相液晶焦锥畴打破了环面焦锥畴的旋转对称性,加上液晶材料自身的光学各向异性,呈现出了新颖的偏振依赖的不对称衍射现象。对图1h所示样品进行衍射实验,其衍射图样很好的反映了结构的对称特点。随着入射偏振旋转,不同衍射级呈现出不同的变化规律。这源于该类液晶畴独特的超结构。研究者对图2a-d所对应的情形进行了分析:对图2j所示情形,水平偏振对应着一组对称的锯齿形相位截面,所以在图2a中,所有的衍射斑点是左右对称的;而对于图2k-l所示的几种情形,对应的都是非对称的锯齿形相位截面,因而产生了类似闪耀光栅的衍射现象。

美高梅在线登录网址 1

我校胡伟、陆延青团队创造性地将动态掩模光取向技术引入近晶相液晶超结构控制,将自上而下的图案化取向与自下而上的液晶分子组装相结合,证实了上述分子层折纸术的设想。首先,引入两个相邻±45°取向的区域,在各自区域内,缺陷线倒向取向方向,形成扇形的square
FCDs;但在边界区域,相邻的分子层连接形成半圆形畴。这是由于在两侧取向的方向上,液晶分子受取向剂表面锚泊力的影响,沿该方向排列,而另外一半由于与表面取向发生冲突而受到抑制,最终只生成半个TFCD。这打破了传统TFCD的旋转对称性,进而引入了形状和方向两个全新的几何维度。当引入周期交替的±45°取向时,可诱导出朝向完全相反的半环面焦锥畴阵列,由于要满足与取向层方向吻合,两种情形会错开半个周期。当相邻取向方向变为0°和90°时,半环面焦锥畴阵列的朝向变为±45°,由于此时取向对两种情况均不违背,两者出现在同一列中,由3/4
TFCD或垂面区连接。在6 μm到 16
μm的周期范围内,畴的大小完全由预设的取向周期控制;当超过此范围,同一周期内会产生新的SFCD;而小于此范围,液晶层能接受到相邻取向区的影响,造成缺陷线偏向平均取向方向,也形成类似SFCD的畴。当进一步引入二维棋盘格形状的二元取向,并使相邻区域的取向角度从±15°变化到±45°,
研究人员获得了内角从100°到180°的不同Fragmented
TFCDs。这说明近晶相液晶焦锥畴的任何几何要素(大小、形状、方向、倾角)都可以通过合理的预设取向方向和图形来进行合理的控制;另外,由于每个畴的缺陷点精确坐落于取向边界的交叉点上,这使得精确操控畴的位置排列成为可能。

(现代工程与应用科学学院 科学技术处)

(现代工程与应用科学学院 科学技术处)

华东理工大学郑致刚教授、袁从龙同学和我校胡伟副教授为本文并列一作,我校陆延青教授、俄亥俄州立大学李国强教授和肯特州立大学李全教授为共同通讯联系人。我校研究生唐明劼同学、华东理工大学沈冬教授、中科院物理所叶方富研究员对本文亦有重要贡献。该研究由国家重点研发计划、自然科学基金、上海市青年科技启明星等项目的资助。

本论文第一作者为我校14级硕博连读生马玲玲,胡伟副教授、陆延青教授与苏州大学迟力峰教授为共同通讯作者,我校研究生唐明劼、葛士军、陈鹏,苏州大学崔泽群博士,厦门大学陈鹭剑副教授,南京工业大学钱皓博士亦对本文有重要贡献。该研究由国家自然科学基金项目资助完成,同时感谢人工微结构科学与技术协同创新中心、学校十百千工程、江苏省优势学科建设工程等的支持。

物质结构的有序性诠释了自然界的神奇与和谐,蝴蝶翅膀绚丽的结构色、DNA双螺旋等呈现给我们一个五彩斑斓的世界,同时也激发了科学家们的好奇心和探索欲望。晶体是这种微观秩序的典型代表,其展现出对量子传输、自旋和布居等行为的操控,被广泛地应用于电子学和光子学领域。有序性会直接影响晶体材料对量子的操控,因而实现晶格的有序排列至关重要。常规的晶体生长技术包括熔体生长法、溶液生长法、气相生长法和外延法。随着微纳科学的发展,控制实现晶面指向的微域化以及形成有序-无序交替的周期或准周期微图案化晶格排列因其蕴含着丰富的物理内涵和应用潜力而引起人们的关注。

美高梅在线登录网址 2

图2. 光控软物质畴工程系列工作:从胆甾相、近晶A相到蓝相

最近,现代工程与应用科学学院陆延青教授、胡伟副教授带领团队在操控近晶相液晶分子层焦锥畴超结构方面取得重要进展。该研究成果于2017年2月10日在线发表在《先进材料》上(Smectic
layer origami via preprogrammed photoalignment Adv. Mater. DOI:
10.1002/adma.201606671)。

液晶是一类典型的具有自组装行为的软物质材料,其分子排列长程有序,呈现多元化(力、热、光、电、磁等)的外场响应特性。当引入强手性作用时,在特定温度下,液晶分子呈现奇异的双螺旋排列,并自组装形成立方晶格而生成蓝相。蓝相晶格尺度与光波长可比拟,呈现出针对特定频率范围的光子局域特性,是一种自组装软光子晶体。与其它晶体类似,蓝相液晶由熵变主导其晶格生长,晶格指向通常无序,因而降低了其光学效率。如果能够控制该软晶格指向,并实现晶格排列的有序性、微域化、图案化,将带来巨大的科学研究价值和工程应用意义。

结构连结了微观与宏观世界,在材料体系中扮演着重要的角色。自然界众多奇妙的现象,例如孔雀羽毛和蝶翼闪耀着的斑斓虹彩,荷叶出淤泥而不染的自洁能力,水黾的轻功水上漂,大多源自于生命体复杂而精致的多层级介观超结构。正是这种微纳尺度下有序结构的嵌套,在宏观上给出了如此美丽而神奇的性质,并非常艺术范儿的为我们进行材料设计提供了源源不断的灵感。

以液晶材料为代表的光控畴工程是软物质领域的新生热点,我院在该领域做出了引领性的工作,近两年已在AM系列发表了三篇封面文章,从胆甾相、近晶A相到蓝相做了系统的研究工作,并基于此类人工微晶畴进行了偏振成像、粒子操控、腔模激射等方面的应用探索,有望产生一系列新的突破。

相关文章